A family of compact strictly pseudoconvex hypersurfaces in $\mathbb{C}^2$ without umbilical points

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sobolev Space Projections in Strictly Pseudoconvex Domains

The orthogonal projection from a Sobolev space WS(Q) onto the subspace of holomorphic functions is studied. This analogue of the Bergman projection is shown to satisfy regularity estimates in higher Sobolev norms when ß is a smooth bounded strictly pseudoconvex domain in C". The Bergman projection P0: L2(ü) -» L2(S2) n {holomorphic functions}, where S2 c C" is a smooth bounded domain, has prove...

متن کامل

Scattering Theory for Strictly Pseudoconvex Domains

The spectral theory of a metric of Bergman type on a strictly pseudoconvex manifold is described and the scattering matrix is shown to be a pseudodifferential operator of Heisenberg type.

متن کامل

Poisson geometry and deformation quantization near a strictly pseudoconvex boundary

Let X be a complex manifold with strongly pseudoconvex boundary M . If ψ is a defining function for M , then − logψ is plurisubharmonic on a neighborhood of M in X, and the (real) 2-form σ = i∂∂(− logψ) is a symplectic structure on the complement of M in a neighborhood in X of M ; it blows up along M . The Poisson structure obtained by inverting σ extends smoothly across M and determines a cont...

متن کامل

Umbilical hypersurfaces of Minkowski spaces

In this paper, by the Gauss equation of the induced Chern connection for Finsler submanifolds, we prove that if M is an umbilical hypersurface of a Minkowski space (V , F ), then either M is a Riemannian space form or a locally Minkowski space. AMS subject classifications: 53C60, 53C40

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 2018

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.2018.v25.n1.a4